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Abstract

A formal model reveals how the information environment affects international races to
implement a powerful, dangerous new military technology, which may cause a “disas-
ter” affecting all states. States implementing the technology face a tradeoff between
the safety of the technology and performance in the race. States face unknown, pri-
vate, and public information about capabilities. More decisive races, in which small
performance leads produce larger probabilities of victory, are usually more dangerous.
In addition, revealing information about rivals’ capabilities has two opposing effects
on risk: states discover either that they are far apart in capability and compete less
or that they are close in capability and drastically reduce safety to win. Therefore,
the public information scenario is less risky than the private information scenario ex-
cept under high decisiveness. Finally, regardless of information, the larger the eventual
loser’s impact on safety relative to the eventual winner’s, the more dangerous is the
race.
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1. Introduction

Uncertainty is central to the study of arms races in the field of international relations. It

underpins analyses of when arms races lead to conflict [Kydd, 1997, Jervis, 1976, Schelling,

1980] and studies of the potential of treaties and other forms of international cooperation

[Kydd and Straus, 2013]. In a world characterized by anarchy, it is likely that the information

environment will play a key role in determining the impact of emerging technologies and the

competitions to develop them. We study the role of incomplete information in a setting that

has been largely neglected in the international relations literature: races for powerful new

technologies. Some scholars posit that races for such technologies may become a key feature

of international politics in the coming decades, as states compete to be the first to develop

new technologies such as advanced artificial intelligence (AI) or nanotechnology that could

give them a sudden, significant increase in capability over other states.

Such races have important differences from competitions to build larger numbers of ex-

isting armaments.1 An important feature of these races is that they are associated with

different kinds of risk. Sometimes this risk is an exogenous feature of the international sys-

tem that is exacerbated by an arms race. If a state’s technological development has the

potential to cause a relative power shift, its rivals may attack to prevent such development

[Fearon, 1995]. In other cases, which we focus on in the present work, the risk of negative

externalities is inherent to the development and implementation process itself. For example,

biological weapons development can lead to releases of pathogens that affect a broad range

of actors beyond those involved in development. In April 1982, a research lab that was

part of the Soviet biological weapons program produced an anthrax outbreak in the city of
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Sverdlovsk that killed over 100 people. Likewise, genetic sequencing of the virus that caused

the 1977-1978 influenza epidemic reveals that the virus seems likely to have come from a

research laboratory [Rozo and Gronvall, 2015]. Biological weapons use has a relatively high

probability of infecting the user, an argument put forth about why there have been relatively

few uses of such weapons despite the weakness of the provisions of the Biological Weapons

Convention [Ord, 2020]. Indeed, some scholars posit that substantial global risks many result

from such technology races [Cave and ÓhÉigeartaigh, 2018, Stern, 2002]. Because of these

risks, actors face an inherent safety-performance tradeoff, in which they must choose the opti-

mal allocation of resources between advancing the performance level of a technology, thereby

increasing the probability of winning the race, and investing in the safety of the technology,

which lowers the risk of disaster [Trager et al., 2021]. Such allocations are determined by

the strategic contexts in which the actors find themselves. Actors’ information about their

rivals’ capability interacts with this tradeoff in a number of ways. Overestimation of a rival’s

technological capability may lead an actor to overinvest in capability, increasing risk relative

to the complete information scenario [Stafford et al., 2021]. In other cases, actors may learn

that they are far behind in the race and choose to cede the prize to their opponent, lowering

risk [Bimpikis et al., 2019].

Some of these dynamics are illustrated in the race for the first nuclear bomb during World

War II when physicists involved in the Manhattan Project expressed concerns over the safety-

performance tradeoff. Edward Teller, for example, feared that a nuclear fusion reaction could

ignite the atmosphere, ending life on Earth. He privately urged the U.S. government to

delay development so that additional calculations and tests could be performed. Though the

team was able to show that these fears were improbable, Teller and his colleagues remained
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worried until after the Trinity test was conducted. Part of the reason why history favored

development over safety is the U.S. government’s uncertainty over the level of progress of

Germany’s development of nuclear weapons. Albert Einstein, for example, would later write

to US President Franklin Roosevelt, “Had I known that the Germans would not succeed in

developing an atomic bomb, I would have done nothing for the bomb.” [Newsweek, 1947].2

A number of scholars believe that the development of advanced forms of artificial intelli-

gence will exhibit similar strategic dynamics [Russell, 2019, Yudkowsky et al., 2008]. Indeed,

AI has already begun to shape international and domestic politics in profound ways, expand-

ing the use of fully automated drones [Horowitz, 2018] and heightening domestic surveillance

in authoritarian regimes [Beraja et al., 2023]. And progress in the field is increasing rapidly.

On average, experts in the field believe there is a 50% chance of developing an AI that

surpasses human performance on all job tasks by 2060 [Zhang et al., 2022]. Such advanced

AI systems may carry enormous benefits to states, but they all produce distinct risks, rang-

ing from AI objectives that are misaligned with human incentives or control of powerful AI

systems by expansionary states or other dangerous actors [Russell, 2019, Brundage et al.,

2018].3 Though AI development is currently led by scientists a strong value for open shar-

ing of knowledge, as the rewards from advanced AI become more apparent, as with nuclear

weapons, states may have incentives to increase the pace and secrecy of development with

as-yet-unknown effects on risk.

Likewise, the importance of such a tradeoff is likely to become increasingly important

in biological research for both military and civilian use. The field of synthetic biology has

an explicit goal of reducing the level of tacit knolwedge necessary to produce new biological

agents [Mukunda et al., 2009], which could increase the ability of state and non-state actors
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to access the technology. The proliferation of terrorist actors concurrent with the publication

of gene sequencing for Ebola, influenza, and other deadly pathogens on the Internet led to

an increased focus on preventing proliferation [Stern, 2002]. Likewise, the cost of genome se-

quencing, and thus of developing deadly biological agents, has been halving faster than every

two years, making the development of weaponized agents accessible to an ever-increasing set

of actors [Mukunda et al., 2009]. Finally, accidental laboratory leaks can also cause deadly

outbreaks, exacerbating risk [Rozo and Gronvall, 2015, Lipsitch and Inglesby, 2014]. Such a

rapidly evolving threat has forced political actors to consider a safety-performance tradeoff

for biological research. Stern [2002], for example, argues that restricting the development of

basic biological research could slow diffusion but also hinder scientific innovation.

We develop a formal model that captures many of these strategic considerations. We

solve for the perfect Bayesian equilibria under three scenarios regarding information about

capabilities: unknown, private, and public. First, we show that more decisive races, in which

small leads in performance produce larger probabilities of victory in the race, are weakly more

dangerous under most parameter values. Second, we show that revealing information about

the capabilities of rivals has two opposing effects on disaster risk. The benefit is that actors

may discover that they are sufficiently far apart in capability and will compete less. The

cost is that actors may discover they are close in capability and thus engage in a dangerous

race to the bottom, cutting corners on safety to win the race. As a result, the public

information scenario is more dangerous than the private information scenario only under

high decisiveness. As decisiveness decreases, the first effect dominates the second, so that

public knowledge of capabilities is welfare-improving. Third, in all information scenarios,

we find that the larger the impact of the eventual loser on safety, relative to the eventual
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winner, the more dangerous is the race due to a public-good effect.

Our work is organized as follows. Section 2 provides an overview of the interaction among

information, investments, and risk in the arms race literature, finding that existing models

fail to fully capture the strategic situation in which states find themselves when developing

risky new technologies. Section 3 describes our choice of model primitives, grounded in

existing cases of technology races. Section 4 presents the base model. Section 5 describes

the forces that generate risk under each information scenario and illustrates these forces in

a series of historical examples. In Section 6, we consider the role of safety sharing, enmity,

and regime type on risk. Finally, Section 7 concludes.

2. Information, arms racing, and risk

An extensive literature exists on how information affects the risk of conflict in arms races.

The sorts of incomplete information that drive the risk of conflict appears to fall into three

broad categories [Ramsay, 2017]. The majority of the literature has focused on uncertainty

over actors’ costs of conflict [Kydd, 1997]. A second strand of literature focuses on psycho-

logical factors influencing states’ risk-taking, invoking such causes as states’ mutual tendency

to be either overly optimistic about their own chances of winning a conflict [Wittman, 2009]

or overly pessimistic about the intent of a rival’s arms buildup [Jervis, 1976]. Finally, a third

strand of literature, in which our work is situated, focuses on the role of uncertainty about

the capabilities of rivals. Across literatures, the existence of a baseline bargaining model

of conflict [Fearon, 1995] has given scholars a framework with which to analyze the role of

uncertainty in war. This has led to a number of robust analytical results, including that
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weaker types are less likely to initiate conflict [Powell, 2004], that a higher variance over the

distribution of types increases risk [Reed, 2003, Wittman, 2009], and that perfectly peaceful

equilibria only obtain when the joint cost of war is large enough [Fey and Ramsay, 2011].

Existing literature has studied the role of information in quantitative arms races, those

for which states accumulate arms but the level of technology remains fixed.4 Kydd [2000] and

Meirowitz and Sartori [2008] focus on situations in which states are able to arm in private

before bargaining. Kydd shows that states perceived as having relatively low capabilities

tend to arm in private in order to secure better bargaining outcomes. Meirowitz and Sartori

[2008] endogenize the decision to disclose capabilities, arguing that states prefer to keep

their capabilities private to secure better bargaining outcomes, even when the risk of war

increases. A second class of models studies an asymmetric arms race, when a weaker state is

seeking to acquire new military capabilities to lower the gap with strong states. Bas and Coe

[2016] study a dynamic model in which a strong state obtains a noisy signal about an arming

state’s level of capabilities, finding that the estimated time to completion of the arming is

more predictive of preventative war than the mere existence of arming.5

The empirical evidence on the influence of arms races on war is mixed. Early work

by Richardson [1960] and Wallace [1979, 1982] finds a positive correlation between rapid

accumulation of arms and the outbreak of war. Later work has qualified these results,

finding only some types of arms races are correlated with an increased outbreak of war.

Horn [1987] finds that brief periods of rapid arming do not heighten the risk of war, while

Sample [1997] finds that, while most arms races are associated with an increased probability

of conflict, those involving nuclear weapons buildups or those between bitter rivals are not.

In contrast to the study of arms races and war, the study of qualitative arms races has
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been hindered by the lack of a standard model for thinking about such competitions. As

such, existing formalizations of arms races we argue are poor descriptors of the strategic

environment in which states find themselves. First, the rewards to qualitative races may

be inordinately large, perhaps leading to rapid, discontinuous power shifts between a state

that develops a new technology and her geopolitical rivals. This view is epitomized by

President Vladimir Putin of Russia, who said with regards to military uses of AI: “the one

who becomes the leader in this sphere will be the ruler of the world.” [AP, 2017]. As such,

it makes little sense to view the outcome of the race in terms of bargaining over shares of a

pie [Fearon, 1995]. Second, the risks resulting from such races may be quite different along

a number of dimensions compared to quantitative arms races, whose main risks are war and

an inefficient allocation of economic resources.6 Instead, risks from technology races may

be both much larger in consequence and have a far smaller probability of realization than

risks from quantitative races [Stern, 2002]. However, states have a far greater control over

the level of risk than they do over the occurrence of war.7 For example, biological research

can continue, albeit at a slower pace, even if a state were to prohibit the publication of most

biological research and keep risk to a minimum.8 This allows states to control the tradeoff

between risks from speeding up development and the risk of a geopolitical rival developing

the technology first.

In this work, we develop a model that explicitly takes into account such features. This

model contributes to a small but growing literature on qualitative arms races. Naude and

Dimitri [2020] study an evolutionary model of a qualitative race within one country, showing

that taxing technological development and using public procurement can incentivize coop-

eration and reduce risk. Stafford et al. [2021] employ a dynamic model to study the effects
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of a capabilities gap on risks in qualitative races, finding that risk is higher for a larger gap

in players’ performance levels when enmity is high but is lower when enmity is low. They

show that there exists a safety-performance tradeoff in which investments in safety and in-

vestments in research progress are complementary goods. Both of these models assume that

research capability levels are common knowledge, an assumption that seems unlikely in real-

world races. Both the Manhattan Project and the Soviet bioweapons program, for example,

were carried out under conditions of high secrecy. While the model in Armstrong et al.

[2016] compares risk in a technology race under public and private knowledge of capabilities,

they make the strong assumption that states have perfect knowledge of the R&D process

such that the state with the highest performance wins the contest for certain. In contrast,

we generalize their model to take into account both the role of information about research

progress and the capabilities of rivals. It is to this uncertainty that we now turn.

3. Model primitives

In our model, two states i P t1, 2u compete to build a significant military technology, such

as a new biological weapon or powerful AI system. Each state is endowed by nature with

a research capability level xi, which we can think of as determined exogenously by existing

attributes such as GDP or military expenditures.9 Depending on the information state,

explained in greater detail below, xi may be unknown, privately known, or publicly known.

Each state’s capability is drawn independently from a commonly-known distribution Gpxiq,

which we assume for simplicity and without much loss of generality, is uniformly distributed

on r0, µs. Each state chooses a level of safety investment si P r0, 1s. However, investing in

8



safety research detracts from a state’s performance in the race in a linear fashion. We denote

a state’s net performance level as ki “ xi ´ si. If a state i wins the race, it then implements

the technology and receives its military benefits; with probability si, implementation is

successful, and with probability 1 ´ si, a disaster is incurred.10 For now, we assume that

only the winner has a chance to implement the technology and thus contribute to the safety

of the process, though later we relax this assumption and allow both states to affect the risk

of disaster. We normalize the value of winning the race to 1 and the value of a disaster to

0. If i loses the race, its rival j has a chance to implement the technology. We assume that

the disaster affects all states equally.11 However, if a rival wins the race and implementation

is successful, a state receives only an intermediate payoff p1 ´ ηq, where η P p0, 1s represents

enmity, or the opportunity cost of losing the race. In effect, then, we have the following

utility ordering for each state i:

Erui|pi implementsqs ą Erui|j implementss ě Erui|disaster occursqs

where uip.q is given by

Eruipsiqs “ siPrpi wins|ki, kjq ` p1 ´ ηqsjPrpj wins|ki, kjq

Finally, we assume that states’ performance levels ki translate into success in the race

according to a logistic contest success function (CSF):
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Prpi wins|ki, kjq “
emki

emki ` emkj

Though contest success functions have been commonly used to model war outcomes (cf.

Fearon [2018], Skaperdas [1998], Hirshleifer [1995]), their use in a technology race warrants

discussion. First, the use of a CSF allows us to model the level of uncertainty inherent

in innovation. Even given a known performance level, research outcomes are the result of

an inherently random process that involves a certain amount of luck as researchers seek to

recombine existing knowledge in novel ways [Weitzman, 1998].12 Even if another research

team is lower in capabilities, they have a positive probability of making the discovery first.

Thus, it is common for economists to measure innovation races between firms using a contest

success function [Baye and Hoppe, 2003]. Second, we choose the logistic CSF in particular

because degree of difference in capabilities matters for success. This appears to be an

important feature in determining risks from qualitative races. Both the Manhattan Project

scientists and Soviet biologists stated that the potential of their rival, Nazi Germany and the

United States, respectively, to catch up in the race was a driving factor encouraging them

to favor performance over safety [Ord, 2022].13

An important focus of our paper is the decisiveness parameter in the CSF, m ě 0.

This determines the rate at which additional effort translates into success. At low values of

decisiveness, progress is highly uncertain, such that even a state with relatively low capability

may win the race due to “luck” or some other resource that is not accounted for by x, but

as m Ñ 8, the state with the highest value of k wins the race with certainty.14 In our
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context, m is correlated with the level of uncertainty over the research process.15 In cases

when m is low, mastering the steps necessary to build a technology is likely to be difficult,

requiring high levels of expertise or a search through a wide space of ideas in order to find

one that “works.” In other cases, m is high, representing a high level of clarity about how

research capabilities translate into success. This is likely to be the case if a new technology

is an iteration of an existing one. Summarizing the above description, Figure 1 presents the

structure of the game.

4. Base model

To examine the risk that arises under different information structures, we begin by charac-

terizing the unique symmetric Bayesian Nash Equilibrium of the game under no information,

private information, and public information conditions. This will allow us to calculate the

expected risk of the race given the distribution of states’ capabilities Gpxq.16

4.1 No information

We begin with the no information case. In this scenario, no state knows its own capabil-

ity. This is distinct from the uncertainty that comes from decisiveness. With low values of

decisiveness, states may know their own performance level and can channel their resources

toward developing the technology, with uncertain results. Here, states also have no infor-

mation about their own capability. This is a more fundamental source of uncertainty: does

a state’s stock of resources even contribute to technological progress at all? Realistically,
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then, the no information case represents a lower bound on states’ knowledge, as in the real

world states are likely to have at least an understanding of how to build a novel technology.

Because states have the same prior beliefs over the type space, in the symmetric Nash equi-

librium, each will choose the same strategy. Here we derive the equilibrium safety level of

each player as well as the expected disaster risk over the distribution of states’ capabilities.

Proposition 1. In the case in which states do not know their capabilities, the unique sym-

metric BNE strategy is given by s˚
H “ min

!

1, µ
2ηrF pµq´F p0qs

)

.

First, we note that the equilibrium outcome is written in terms of F pcq, where Ci “

Xi ` Vi ´ Vj, V „ Gumbelp1, 1
m

q represents the capability level of state i, adjusted for

uncertainty in winning, which we recall is parameterized by the race decisiveness m.17 Here,

we see that safety is inversely related to the number of states in the race, and the enmity

level, while it is positively related to both the variance of the true types, parameterized by

µ, and the variance of the noise (since as m decreases, the difference F pµq ´ F p0q shrinks

to zero). Note that since states cannot condition on their research capabilities, all play the

same equilibrium safety level.

Now we turn to the disaster risk. This is the expected probability of disaster over the

distribution of types Gpxq who play their BNE strategies. Since all states are playing the

same action, the expected risk of disaster is simply given by 1 ´ s˚
H.

Corollary 1.1. In any distribution of capability levels the expected level of disaster risk is

given by DH “ max
!

0, 1 ´
µ

2ηrF pµq´F p0qs

)

.

This value represents the expected risk from a qualitative race to a neutral third party

who cannot query states for their types. This provides a useful benchmark by which we can
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compare the level of risk even as states are permitted increased knowledge of their own or

their opponent’s capabilities.

4.2 Private information

In this section, we consider the case in which each state knows its own capability level but

not its rival’s. This situation more closely resembles realistic qualitative races, which often

involve closely-guarded state secrets. Power-seeking states have a strong incentive to keep

their technological capabilities hidden from rivals in order to win the race, as even proof-

of-concept demonstrations could lead to increased competition [Bimpikis et al., 2019]. The

Soviet biological weapons program, for example, was conducted in so-called “closed cities,”

which were not printed on most maps and which were off-limits to even Soviet citizens. In

the private information case, each state i can condition its safety level on its own capability,

choosing a strategy sprivatepxiq. Before we establish the level of safety in this scenario, we

begin with a lemma showing that performance, or capability less safety, is always increasing

in xi:

Lemma 1. Let kipxiq “ xi ´ sipxiq. In the private information scenario, at any BNE, ki is

strictly increasing in xi.

Now we solve for the equilibrium safety level.

Proposition 2. There exists a unique symmetric Bayesian Nash Equilibrium in pure strate-

gies. The strategy is given by s˚
privatepxiq “ min

! şxi
´8 F pcqηdc

F pxiq
η , 1

)

.

Here, we see that states increase their safety levels as capabilities increase. Since more

capable actors are more likely to win the race, knowing they are at the high end of the
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distribution, they can condition on this information by trading off additional performance

for a higher level of safety. In addition, as in the private information case, we see that

as enmity level increases, states start putting less efforts into safety. Finally, as before,

the overall disaster risk is given by Dprivate “ 1 ´ Ewinnerrs
˚
privatepxiqs, where Er.s is the

expectation over the true distribution of player types. Corollary 2.1 gives formal expression

of the disaster risk.

Corollary 2.1. The disaster risk in the private information scenario is given by Dprivate “

1 ´ 2
µ

¨
şµ

0
min

!
şx

´8
F pcqηdc

F pxqη
, 1

)

F pxqdx.

4.3 Public information

Now we solve for the case in which both states are fully aware of each other’s capabili-

ties. While states are often incentivized to keep capabilities secret in order to impede rivals’

progress, in other cases, states may want to demonstrate their capabilities to deter potential

rivals, as in the case of the U.S. and Soviet hydrogen bomb tests in 1952 and 1953, respec-

tively. Alternatively, this corresponds to states of the world in which espionage techniques

make secret-keeping impossible. In this state of the world, the difference in capabilities

determines states’ safety choices and the risk of disaster. Here, we denote the leader’s ca-

pability as x and the laggard’s as y. Denote ∆ :“ x ´ y as the variable on which states

condition their safety choices. We can then find a unique pure strategy Nash equilibrium.

Proposition 3. There exists a unique pure strategy Nash equilibrium for the public infor-

mation cases for all values of m ą 0.

Denote the solution to this system of equations as s˚p∆q. Except in the case where
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m Ñ 8, equilibrium strategies do not permit a closed-form solution. In order to give

intuition, then, in the following two corollaries, we show payoff and strategy equivalence

with Armstrong et al. [2016] in the limit.

Corollary 3.1. [Strategy equivalence] As m Ñ 8, strategies converge to the following ex-

pressions:

limmÑ8 s˚
xp∆q “ min

!

1, ∆
η

)

, limmÑ8 s˚
yp∆q “ p1 ´ ηq ¨ min

!

1, ∆
η

)

.

Corollary 3.2. [Payoff equivalence] As m Ñ 8, states’ utilities converge to the following

expressions:

limmÑ8 uxp∆q “

$

’

’

’

&

’

’

’

%

∆
η

∆
η

ă 1

1 otherwise

and limmÑ8 uyp∆q “

$

’

’

’

&

’

’

’

%

p1 ´ ηq∆
η

∆
η

ă 1

1 ´ η otherwise

.

From these limit expressions, we see that safety is positively associated with the difference

between the leader and laggard and negatively associated with enmity. Unlike in the private

information scenario, where highly-capable states always play higher levels of safety, here

capable states will cut corners on safety if their rival is close in capability. As usual, enmity

is negatively associated with safety. We compute the associated disaster risk as follows:

Dpublic “ 1 ´ 2

ż µ

0

ż y

0

„

s˚
xp∆qF pxq ` s˚

yp∆qp1 ´ F pxqq

ȷ

gpyqgpxq dx dy. (1)
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5. Information and risk

We now turn to comparisons of disaster risk under our three information scenarios.18 We

begin with a derivation of comparative statics in the model and then present empirical

examples of these forces from real-world qualitative races.

5.1 Information and welfare

Changing information states can make the race more dangerous; we seek to understand how

this interacts with the decisiveness parameter m. We present two primary sets of results,

both illustrated in Figure 2. First, across most parameter values, the expected disaster risk

is increasing with m. We prove strong versions of this statement for the no information case

and private information case and a weaker statement for the public information case.19

Proposition 4. In the no information and private information scenarios, risk always in-

creases with decisiveness, unless risk is 0. In the public information scenario, risk is higher

as m Ñ 8 than as m Ñ 0.

That is, if trading off safety for additional performance does not produce a high chance of

winning the race, states will be reluctant to do so. As decisiveness becomes arbitrarily large,

however, even the smallest additional unit of performance will determine for certain who

wins the race, offering states a large incentive to cut corners. An observable implication of

this is that in early stages of development, when progress is highly uncertain, states are likely

to prioritize safe development over winning the race. In the early stages of nuclear weapons

development, for example, and as late as 1942, U.S., Soviet, and German scientists published

major insights on nuclear fission in publicly-accessible physics journals. Only around 1940,
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when the prospect of succeeding in the race became more imminent, did U.S. scientists begin

concealing their results and progressing without checking necessary calculations [Ord, 2022].

Second, we want to know how the relative openness of the race interacts with decisiveness

to influence risk. As shown in Figure 2, for much of the parameter space, the no information

scenario is safer than the other two information scenarios. In fact, in Proposition 5 below,

we show that the no information scenario is always at least as safe as the private information

scenario.

The most interesting case, however, is the comparison between the public and private

information scenarios. In quantitative arms race models, better information about rivals’

capabilities tends to reduce risks [Wittman, 2009, Reed, 2003]. In contrast, in their study of

a qualitative race, Armstrong et al. [2016] find that, given a high degree of enmity between

states, the public information scenario is more risky than the private information scenario.

However, we show that both effects are possible in a qualitative race. For large values of m

and high enmity, we show that indeed public information produces higher risk than private

information, producing an information hazard effect. However, as m declines, we see in

Figure 2 that the public information scenario becomes safer than the private information

scenario. Finally, as m tends to 0, we see that in both cases, players are unwilling to take

any risk and implement at the maximum safety level. We present this result formally.

Proposition 5. The no information scenario is always safer than the private information

scenario, while the relative safety of the public and private information scenarios depends on

m.

These results are presented in Figure 2, where we see that the riskiest information scenario
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changes at m “ 6. Two forces drive this result. Note that the decisiveness parameter m

enters into the disaster risk function in two places: the contest success function and the

equilibrium safety choices of the players. To see how these forces affect risk, consider the

drivers of risk when m Ñ 8. The public information scenario is riskier than the private

information scenario as long as

µ ą
pη ` 1q3 ` η2

3η
(2)

In the public information case, risk is driven by cases in which the laggard is close

behind the leader in capability, which happens with probability Gpxq “ x{µ. In the private

information case, risk is caused by low-capability winners, which, since there is no noise in the

CSF, occurs precisely when both states have low capabilities, which occurs with probability

Gpxq2 “ x2{µ2. Thus, the probability of a high-risk outcome decreases linearly in µ in

the public information scenario but quadratically in µ in the private information scenario.20

Thus, when m “ 8 and µ is sufficiently large, the public information case is most dangerous.

Now fix µ and consider what happens as m tends to 0. In both cases, there is an increased

probability that the laggard wins, which by itself increases overall risk. However, states

also see a lower expected return to reducing safety investments, which implies lower risk.

Consider what happens to the probability that i wins as m tends away from `8. We have

B

Bm
Prpi wins|xiq “

mempxj´xi`si´sjq

p1 ` empxj´xi`si´sjqq2
(3)
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In the public information case, xj ´ xi ` si ´ sj « 0, so BPi{Bm « m{4. Thus, the

probability that a state wins is declining linearly in decisiveness. In the private information

case, however, the expected gap in capabilities between the winner and loser at m Ñ 8

is 1{6µ, so BPi{Bm « memr´6pη`2q{µpη`1qs{p1 ` emr´6pη`2q{µpη`1qsq2, which note is close to 0

for m large. Thus, in the public information case, since the leader’s probability of winning

declines rapidly with m, we should expect that state and, in response, its rival to rapidly

increase safety as decisiveness falls. In the private information scenario, the probability that

a given state wins initially changes very little as decisiveness falls; thus, states will increase

their safety strategies much more slowly than in the public information case. These effects

are illustrated in Figure 3. In this figure, we simulate a race in which µ “ 1, η “ 0.9. We

fix xj “ 0.5 and consider what happens to expected safety when we vary xi. In the public

information case, the race is most dangerous when xi “ xj “ 0.5. As m falls, both leader

and laggard rapidly increase safety, so the expected safety of the winner rises rapidly, even

when xi “ xj. In the private information case, risk is largely driven by competition with

risky laggards. When m Ñ 8, risk is driven entirely by the leader’s safety choice, so safety

is constant as long as xi ď xj. As m falls to 5, we see that safety is still largely flat when

xi ď xj, indicating that the leader’s efforts are mostly driving safety (since sipxiq is increasing

in xi). Since neither player has as much incentive to change strategies as m falls, the decline

in the expected safety of the winner is not nearly as rapid as in the public information case.

As a result, even if the public information scenario is more risky at high decisiveness, if

decisiveness declines far enough, the private information case may well become more risky.21

Finally, the no information case is weakly safer than the private information case. Thus,

learning one’s own capability does not increase welfare. In the no information scenario, just
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as in cases with low decisiveness, states are quite uncertain about the returns to their own

efforts. Here, the chance of being a laggard is exactly 1{2, so states are highly uncertain

whether cutting corners on safety will benefit or harm them. Since they know their rivals

will also face the same uncertainty, they will be quite unwilling to cut corners on safety.

Thus, even for very high decisiveness, states are unwilling to take much risk, so states would

be better off if they did not learn their type.

5.2 Empirical illustrations

Using our model, we now examine a series of examples that illustrate the importance of

the above forces in historical technology races. We find that our analysis can explain the

behavior of laggard states in a number of cases, illustrated in Table 1, which displays the

relative level of risk taken on by the laggard in private and public information scenarios

when the gap with a capable technology leader is varied.

5.2.1 Information scenarios

First, we compare the role of public and private knowledge when the gap between a capable

leader and a laggard in a technology race is believed to be large. Consider the U.S.-Soviet

race for the development of intercontinental ballistic missiles (ICBMs) in the 1950s. In

November 1958, the U.S. tested its first successful ICBM. At the time, the U.S. Air Force

estimated that the Soviet Union was far ahead in development, with hundreds of missiles

developed as early as 1959 [Ellsberg, 2017]. Public statements by Soviet leadership supported

this assessment: in October 1957, Premier Nikita Khrushchev declared Soviet factories were

“turning out missiles like sausages” [Ellsberg, 2017]. As a result, the U.S. engaged in a
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rapid buildup of ICBM capabilities, producing over 1,000 by 1965 [Initiative, 2022]. The

belief that they were relatively low on the distribution of capabilities, then, led the U.S. to

pursue a risky development strategy, one which might not have occurred if information on

capabilities was made public. While the Soviet Union did prioritize an ICBM program as

early as 1957, Soviet leadership knew they were ahead in the capabilities distribution and

proceeded more slowly with development, with Khrushchev acknowledging his statements

about Soviet progress were a bluff [Mathers, 1998]. By 1961, when the U.S. learned that

their estimates were mistaken, they had developed 40 missiles, while the Soviets had only

4 [Lawler and Mahan, 1961]. On the other hand, when states know they are behind in

the race, they are often willing to develop safely. Consider the example of the Nuclear

Non-Proliferation Treaty. That the weapons stockpiles of most nuclear powers are public

information shows most states are willing to publicly reveal their nuclear capabilities in

order to be able to develop safe, peaceful nuclear technology under the treaty in exchange

for technology transfers, rather than engage in a weapons development race that risks strong

international retaliation [Fuhrmann and Lupu, 2016]. A deviation to a race would be futile,

since the wide gap in the distribution of capabilities is public knowledge. Thus, even most

states that have technical capabilities to build nuclear weapons, such as Argentina and Brazil,

are not willing to run the risk of a race [Narang, 2017]. Only when enmity is high enough

are some low-capability states, such as North Korea, willing to begin active development.

Our model predicts that we should see the opposite effect when states are close: when

information is public, states engage in a “race to the bottom” on development, generating

a far higher level of risk than in the private information scenario. The U.S. government, for

example, began the Space Race after the public launch of Sputnik I by the Soviet Union.22
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Prior to the launch, while each state knew the other possessed a satellite program, the

U.S. underestimated Soviet progress, with President Eisenhower choosing to deprioritize the

speed of the U.S.’s own program. The Soviet launch of Sputnik I in October 1957 caught

U.S. policymakers by surprise, prompting Eisenhower to re-prioritize the Vanguard project,

which until then had been beset by delays [Barnhart, 2021]. After all, the U.S. was a close

second, launching its first satellite a mere 4 months later, in January 1958. In contrast, by

refusing to conduct public tests of a new technology, a state may be able to hide its level of

technological prowess to avoid a costly race with its rivals. Consider the case of South Africa’s

nuclear weapons development. From 1971 through the dismantling in 1990-1991, South

Africa pursued what Narang [2017] calls a “hidden” development strategy, prioritizing secrecy

above speed or deterrence. Besides risks inherent in the production process, South Africa

also faced risks of international isolation or retaliation should its program be discovered, as

neither superpower wanted it to acquire them [Rabinowitz and Miller, 2015, Liberman, 2001].

While the U.S., suspicious of South Africa’s refusal to accept International Atomic Energy

Association inspections of its nuclear reactors, placed an embargo on nuclear fuel exports

to South Africa, South Africa was able to assemble and then store its first thermonuclear

weapon in 1979 and developed a further 5 by 1990 [Liberman, 2001]. Unlike the space race,

South Africa’s secret development did not prompt further proliferation by rivals, who did

not know how behind they were in development, nor more than a moderate response by

the international community, who did not realize the scale of South Africa’s technological

advance. In fact, a race was avoided despite a relatively high degree of enmity between South

Africa’s government and the two superpowers.
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5.2.2 Decisiveness

The second primary source of risk in our model is high decisiveness. Though quantifying this

parameter is difficult, we note that states’ beliefs about m are likely to be highly correlated

with how rapid, conditional on investment, they anticipate research progress to be. If states

express a belief that research progress will happen quickly or that they are certain about

key technological parameters, it is likely they believe m to be large. By analyzing variation

in actor’s expressions of certainty, then, we can analyze how changes in decisiveness affect

states’ safety choices. For example, as R&D on the first atomic bomb progressed, U.S. and

British politicians and scientists increasingly expressed certainty that such a weapon could

be developed in the near future. Early in development, however, there was considerable

uncertainty about the size of the critical mass of uranium and amount of infrastructure

spending that would be required to develop a bomb. In 1939-1940, estimates for the critical

mass ranged from 44 tons to 1 pound of uranium-235, indicating high uncertainty about

the timeline required to produce sufficient enriched uranium [Ord, 2022]. In this period, it

could be said that decisiveness was low: it was unclear by how much a marginal investment

in capabilities would improve performance in the race. At this time, scientists and officials

seemed relatively unconcerned about sacrificing safety for an advantage in the arms race,

as U.S., German, and Soviet scientists continued to publish key results on nuclear fission

in physics journals [Ord, 2022]. By 1942, the U.S. and U.K. governments came to believe

that decisiveness was considerably higher. For one, uncertainty surrounding estimates for

the critical mass had declined to such a degree that the U.S. was able to accurately forecast

the remaining time to the development of uranium and plutonium bombs [Ord, 2022]. As
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uncertainty in the possibility of success decreased, the U.S. drastically increased funding

of capabilities: the Manhattan Project would end up totalling 0.4% of U.S. GDP by 1944.

Likewise, U.S. funding on safety relative to performance began to decrease, as it pressed

forward with the Trinity test despite Teller’s fears that it could ignite Earth’s atmosphere

[Ord, 2020].

6. Multiple tests, varying enmity

Up until now, we have made a number of simplifying assumptions: that only the winner can

implement the technology, that enmity is fixed, and that regime type is symmetric. In this

section, we relax these assumptions to observe their effects on risk.

6.1. Multiple tests and overall risk

First, we analyze a case in which both states contribute to overall safety. Real-world quali-

tative races often proceed as a series of steps. During the Space Race, for example, the U.S.

conducted a failed satellite test in December 1957 before succeeding two months later. If

each test carries some risk, then the choices of both the winner and loser of the technology

competition determine the overall level of risk. This generalization raises important theoreti-

cal questions: 1) How does the likely winner’s safety investment change now that her optimal

strategy depends on the likely loser’s safety investments? and 2) How does the structure of

the safety provision burden affect states’ incentive to win the race and the overall level of

risk? We explore these questions in each of the three information contexts of our baseline
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specification. Now, let the winner contribute a fraction γ P r0.5, 1s to overall safety, while

the loser contributes p1 ´ γq.23 In our base model, γ “ 1 and only the winner conducts a

risky test of the technology. However, as γ Ñ 0.5, the eventual loser of the race approaches

the leader’s level of contribution to safety. In each state’s utility function, then, the winner’s

expected payoff is multiplied by ŝi, where

ŝi “ γsi ` p1 ´ γqsj

As before, we solve the model in all three information scenarios and present the results

as propositions. In the no information case, the symmetric equilibrium dictates that both

states exert the same level of safety efforts as in the main section when γ “ 1. When the

competition loser’s safety efforts–or lack thereof–also affects disaster risk, we find that the

equilibrium safety efforts unambiguously decreases.

Proposition 6. In the no information case, the unique equilibrium level of safety efforts in

a symmetric BNE of pure strategies is given by:

s˚
H “ min

"

1,
µrγ ` p1 ´ γqp1 ´ ηqs

2ηrF pµq ´ F p0qs

*

The expected level of disaster risk is then

DH “ max

"

0, 1 ´
µrγ ` p1 ´ γqp1 ´ ηqs

2ηrF pµq ´ F p0qs

*

The less safety is determined exclusively by the winner, the more the states are willing

to sacrifice safety to increase the chance of winning the race. This is due to a public-good
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effect. As the fraction of the benefits of a given state’s safety decrease relative to the cost,

it is less willing to invest in safety over performance. We see that the amount by which the

safety efforts decrease is linear in γ.

Turning to the private information scenario, states are aware of their endowed capability

and how rare it is compared to the general population, while still unaware of the oppo-

nent’s capabilities. In this case, the states condition safety investment strategies on their

capabilities. First, we establish the equivalent of Lemma 1 for γ ă 1.

Lemma 2. In the private information scenario when γ ă 1, ki is always strictly increasing

in xi.

Then Proposition 7 characterizes the equilibrium safety investments and disaster risk.24

Proposition 7. In the private information case, the equilibrium level of safety efforts in a

symmetric BNE of pure strategies is unique up to a set x and is given by:

s˚
privatepxiq “ min

#

1,

şxi

x
Ωpcq

η
γ´p1´ηqp1´γqdc

Ωpxiq
η

γ´p1´ηqp1´γq

+

where Ωpxiq “ p1 ´ ηqp1 ´ γq ` rγ ´ p1 ´ ηqp1 ´ γqs ¨ F pxiq

The disaster risk is given by:

Dprivate “ 1 ´
2

µ
¨

ż µ

0

min

#

1,

şxi

x
Ωpcq

η
γ´p1´ηqp1´γqdc

Ωpxiq
η

γ´p1´ηqp1´γq

+

¨ rγF pxq ` p1 ´ γqp1 ´ F pxqqsdx

Although the expression is too complicated to elicit general intuition from, we can get
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insight into the effect of γ on the equilibrium effort when enmity levels are extreme. As

η Ñ 0, and the states do not mind whether they or their opponent successfully builds

the technology, Proposition 7 dictates that s˚
private “ 1. When η “ 1, and the states are

indifferent between disaster and victory for their adversaries, s˚
private “

ş

F pcq
1
γ dc

F pxq
1
γ

. Remember

from Proposition 2 that when e “ 1, the equilibrium safety effort level was
ş

F pcqdc

F pxq
. As γ

falls, more equilibrium safety comes from the loser. This produces a public-good effect, as

γ is the fraction of a state’s safety provision that it internalizes, and 1 ´ γ is the fraction

that goes to the other state if it wins. As γ decreases, a state internalizes less of the benefit

of its own safety level, causing it to reduce provision.25 In addition, when enmity starts to

tend away from 1, low capability players put more effort into safety, since even the loser’s

safety choice matters in her utility function.26 This produces an additional selection effect ;

that is, compared to the case when γ “ 1, moderately high capability players are now the

most risky. Since they are more likely to win, this increases overall disaster risk. In sum, in

an environment where the enmity level is high, having safety risk be dispersed between the

winner and the loser makes states put less effort into safety.

Due to the complexity of states’ utility functions in the public information case, we instead

report the results of numerical simulations of equilibria to compare to the no information

and private information cases. Figure 4 presents the disaster risk for γ P r0.5, 1s for the

same parameter values we used in simulations in Figure 2 (η “ 0.9, µ “ 1.44) under high

(m “ 10) and moderate (m “ 5) values of decisiveness. We see that, as in the no information

and private information cases, disaster risk is monotonically decreasing in γ in the public

information case as well. Similar to the other cases, the same public-good and selection

effects apply. As γ is lowered, the loser contributes more to overall risk. Since the loser is
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more likely to have lower capabilities than the winner, and thus also to invest less in safety in

order to win, this serves to increase risk. Likewise, as other players contribute less to overall

safety, each faces a temptation to shirk in their safety investments. Reduced investments in

safety by others lowers the expected return on safety, even for actors that are likely to win

the race.

6.2 Risk and the marginal value of winning

Up until now, we have held fixed the η parameter, which we have termed enmity and char-

acterizes the opportunity cost of one’s rival winning the race. Enmity can be high for one

of two reasons. First, enmity can be high because states are existing rivals.27 When states

are more intense rivals, they are more willing to cut corners to develop a new technology.

This is one of the reasons the United States government ignored some of the concerns of the

director of the Los Alamos Laboratory, J. Robert Oppenheimer, over the development of

the atomic bomb: they feared Germany winning the race.28 Presumably, the U.S. would not

have taken on the same level of risk had the U.K. been developing a nuclear bomb instead.

Second, enmity can be high because losing the race may quite harmful to one’s security if

the increase in capability enabled by the technology is relatively large. In contrast, states

developing a next-generation fighter jet or tank are unlikely to prompt high levels of corner

cutting on safety, even competing against a bitter rival, as the expected value of losing the

race is only marginally smaller than that of winning. In this case, we expect the e parameter

to be relatively low. Our model captures both of these intuitions. In all three information

scenarios, states choose weakly lower safety levels when the level of enmity between them is
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higher. Results are presented for the public information case in Figure 5 for high and low

values of decisiveness m and of γ. We see that higher values of m and lower values of γ

increase the concavity of the curve. That is, in highly decisive races or races in which both

the winner and loser share approximately equal safety burdens, a race can quickly become

maximally dangerous even when enmity is still low. In addition, we see an interaction effect:

for low γ and high m, enmity is more harmful than if only one of these conditions are met.29

6.3 Regime type and risk

Another parameter we have kept fixed is our value of disaster, which recall is normalized

to 0. However, it is likely that the relative value of a disaster depends on a state’s regime

type. In military conflict, for example, democracies tend to exhibit greater care to reduce

casualties than autocracies (Gartzke [2001]). Likewise, in technology races, we might expect

democracies to value minimizing the chance of a disaster more highly than autocratic leaders.

To formalize this intuition, let a disaster reduce the value of the race outcome relative to

winning by a factor of di, which is drawn to a distribution di „iid Hpdq that is independent of

a state’s level of capabilities. Therefore, we can view democratic states as having lower values

of di.
30 As expected, we find that if races are more likely among autocracies, as parameterized

by a higher expected disaster value, risk increases in all information scenarios. Importantly,

this is driven not only by races between autocracies but also by races between democracies

and autocracies: in response to an autocratic rival’s corner cutting on safety, a democracy

will choose a lower safety level than it would when racing against another democracy. The

following proposition formalizes this result:
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Proposition 8. In all information scenarios, the expected safety of the race weakly increases

as the average cost of a disaster rises.

7. Conclusion

In the introduction, we suggested that qualitative technology races present novel sources of

risk that affect states’ national security. Given the rate of progress on a number of powerful,

risky military technologies such as advanced artificial intelligence [Brundage et al., 2018,

Dafoe, 2017] and enhanced biological agents [Mukunda et al., 2009, Stern, 2002], such risks

will become increasingly important factors in states’ decision-making, even as they remain

understudied in the international relations literature. To that end, we develop a model that

seeks to understand the strategic forces influencing such risk. We find that the level of risk

depends on states’ knowledge about each others’ capabilities as well as the decisiveness of

the race. When races are less decisive, as is likely the case in the early stages of research or

in novel fields, public knowledge is beneficial, preventing weak laggards from cutting corners

on safety. On the other hand, at high levels of decisiveness, when the race is in its final stages

or research is in a well-established field, private knowledge is safer, preventing a race to the

bottom. Finally, we show that as the eventual loser is allowed to conduct more powerful

tests or as enmity between players rises, overall safety falls.

A clearer understanding of the strategic forces influencing states’ technology develop-

ment can inform policymakers seeking to reduce the risk of an accident. First, our model

implies that disclosure policies are important for novel technologies. As we have seen, public
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revelation of capabilities can produce a dangerous competition in which states steeply cut

corners on safety to win. On the other hand, keeping capabilities private can induce risky

behavior by states who believe they are lagging behind, as the U.S. did during the ICBM

race. In this case, if the Soviet Union had credibly shared its capabilities, it may have pre-

vented a dangerous race. Taken together, these two imply that there is room for policies,

such as agreements to share technology or provide transfers to identify incapable laggards

and prevent them from racing [Stafford and Trager, 2022]. Second, policymakers should be

clear-eyed about to what extent cutting corners on safety will produce additional gains in the

race. As we have seen, public knowledge of capabilities and high levels of safety are optimal

when decisiveness is low. Thus, giving in to the hype about rapid, certain progress of a new

technology may unnecessarily increase risk if such hype is not well-founded [Smith, 2020].

Rapid improvement in machine language-processing via so-called large-language models, for

example, has produced media hype [Bender and Koller, 2020] about the imminent arrival of

human-level or otherwise transformative artificial intelligence, despite experts still believing

that such progress remains decades away [Zhang et al., 2022].

We believe that the findings of our model can admit a number of extensions and therefore

suggest directions for future research. First, we assume that the information partitions are

given exogenously. In many scenarios, however, states may choose to share information

or close off development to increase their own chances of winning the race. Just as in

conventional arms races, states can signal their military superiority with a public display of

weapons capability in an effort to deter would-be attackers. On the flip side, states may have

an incentive to engage in espionage to uncover the capabilities of their rivals or gain access to

their knowledge base. Soviet spying during the race for the atomic bomb likely accelerated
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their program by a year or two [Ord, 2022]. Studying a model in states are allowed to disclose

information voluntarily or spy on rivals will help elucidate which information scenarios are

most likely. Second, our model makes two restrictive assumptions about safety research: that

safety research is linear in reducing performance and that the effects of safety research are

known. Trager et al. [2021] allows the safety-performance tradeoff to vary, finding that states

choose higher safety levels when the tradeoff is more concave. Lower returns to safety relative

to performance could also be a result of uncertainty. For a risk-averse state, more uncertainty

over safety research will reduce investment in safety, making the race more dangerous. Third,

our model considers decisiveness to be exogenous. Instead, we might expect it to vary over

time; as we have shown, the race for the atomic bomb became more decisive–and thus far

more risky–as research progressed. Therefore, extending the model to a dynamic game in

which decisiveness varies over the course of the race might yield insights about when races

are most risky. Fourth, it may be important to analyze the effect of information in a dynamic

context where agreements are possible. Here, information plays a different role, sometimes

allowing states to increase general welfare by conditioning their strategies on each other’s

behavior [Stafford and Trager, 2022]. Fifth, to focus attention on states’ decisions to allocate

their R&D budget on capabilities and safety, we have assumed budgets and therefore entry

into the race are exogenous. Instead, we might consider a model in which states face a cost

function and choose how much to spend on capabilities and safety, in which the optimal

solution may be to simply stay out of the race. After all, the majority of states have never

invested in a nuclear weapons program, and such a model would help elucadate the reasons

behind this empirical regularity.

In this paper, we have sought to tie together various strands of literature–on qualitative
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races and on risks from various technologies such as nuclear weapons and bioweapons–into a

unified model. In doing so, we hope to provide a framework upon which scholars can build

as they seek to understand the strategic effects of and risks from emerging technologies. In

particular, our model contributes to understanding the role of information and uncertainty in

qualitative arms races showing that the decisiveness of the race can change the qualitative and

quantitative effects of information. We hope that these insights are not only theoretically

insightful but can be used to improve policy decisions so that advanced technologies are

developed for the benefit of all.
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Notes

1See Huntington [1958] for a related distinction between qualitative and quantitative arms races.

2Ellsberg [2017] notes that the Manhattan Project continued to take on unnecessary risks even after it

became apparent that Germany would lose the war.

3Both problems are evident in current AI systems. Because are often trained on datasets that reflect

human biases, current AI models often produce racist or otherwise biased outputs by default [Weidinger

et al., 2021]. Likewise, the increasing cost of training state-of-the-art systems serves to “de-democratize” AI

progress by shifting frontier research from universities to technology firms [Ahmed and Wahed, 2020].

4For a comprehensive review of the literature on arms races, see Glaser [2000].

5A related literature studies uncertainty over the utility functions over the value of prizes in arms races.

Relevant papers include Jervis [1976], Kydd [1997], and Fearon [2011].

6That is, a costly peace [Powell, 1993].

7Note that early studies of qualitative races failed to fully appreciate this point. Focusing on relatively

small innovations, Huntington [1958] argues that the main tradeoff faced by states is whether the development

of qualitatively new weapons is worth a more rapid depreciation of current weapon stocks, while Intriligator

and Brito [1984] find that qualitative races marginally increase the probability of war initiation relative to

quantitative races.

8However, it must be noted that even such a draconian safety measure might not fully eliminate risk.

A recent study of BSL-3 labs (the highest level of security in the U.S.) found a risk of about 1 accidental

infection of a dangerous pathogen for every 100 full-time person-years of work [Lipsitch and Inglesby, 2014].

9We consider this a plausible simplifying assumption. Though states are able to increase the share of

expenditures devoted to a particular technology, qualitative races are generally brief enough that they cannot

greatly increase their military budget in the same time period [Ord, 2022].

10Though we conceive of the benefits of a new technology as economic or military, qualitative races may

also accrue prestige benefits to the winner [Barnhart, 2021].

11Certainly, igniting the atmosphere would be equally bad for all states!

12In contrast, Bas and Coe [2016] model research success as independent of the level of R&D effort.
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13Though Conrad and Spaniel [2021] note that a logistic CSF does not display decreasing returns to scale,

the importance of winning a qualitative race to a state is likely to mean that in principle, such a constraint

will not strongly influence state behavior. Consider that from 1964 to 1966, the U.S. was willing to spend

over 4% of its federal budget on NASA to win the space race against the Soviet Union.

14Note that this assumption allows us to nest our model as a more general case of the model in Armstrong

et al. [2016], since contests of this form converge uniformly to all-pay auctions [Jia et al., 2013, Che and

Gale, 2000].

15In models of conflict, m represents the offensive advantage [Fearon, 2018].

16Proofs of all propositions are presented in Appendix A.

17This is a common technique for finding closed-form expressions for equilibria in difference-form contests

[Ryvkin and Drugov, 2020], analogous to using Gumbel-distributed noise to characterize choice probabilities

in logit regressions [McFadden, 1974].

18For the public information case, we a modified version of the computational solution implemented by

Muller et al. [2021].

19Though our statement for public information is relatively weaker, we note that in simulations of “rea-

sonable” parameter values, such as those simulated in Figure 2. risk sharply increases with decisiveness in

the public information case as well, only mildly decreasing as m increases without bound above 20.

20Note that a larger µ implies that relative capability is likely more significant than relative corner-cutting

in determining the winner of the contest.

21In Appendix B, we plot each gap in risk between information states.

22Though the Space Race likely entailed a lower overall level of risk than many other technology races,

tragedies such as the Challenger disaster show that technology races for space exploration are not without

risk.

23This is equivalent to the weighted sum provision function in public goods problems [Buchholz and

Sandler, 2021].

24Unlike in Proposition 2, s˚
privatepxiq is not an equilibrium for all xi P supppCq. In Appendix A, we

establish the uniqueness of x up to pm, η, µ, γq and the behavior of xi ă x.
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25In the context of climate policy, Sandler [1998] notes that, states have achieved a far higher reduction in

sulfur emissions than in nitrogen oxide emissions since 1985 due to the fact that γ is far higher in the former

case.

26Indeed, for low enough η, γ, low capability players deviate to the corner solution s˚pxq “ 1. For example,

for γ ă
1´2η
2´η , all xi ď Erxis “

µ
2 play s˚pxq “ 1.

27This is consistent with common approaches to rivalry in international relations theory. See, for instance,

Hensel et al. [2000] and Goertz and Diehl [1995].

28Ord [2020].

29Results for the no information and private information cases are similar and are presented in Appendix

B.

30Although there is a positive correlation between income and democracy (see e.g. Treisman [2020]), this

may not hold conditional on states being in a technology race.
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Figures and Tables

Gap with Capable Leader

Information Scenario
Small Large

Private Low (S. Africa nuclear program) High (ICBM race)
Public High (Space Race) Low (Nuclear NPT)

Table 1: Risk in historical technology races
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Figure 2: Disaster risk (µ “ 1.44, η “ 0.9)
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